FIRST - Mapping flexibility of urban energy systems

(MITEXPL/SUS/0015/2017)

Daniel Aelenei
Rui Lopes, João Martins CTS, FCT NOVA
Laura Aelenei, Helder Gonçalves, Teresa Simões, LNEG
Carlos Silva, Francisco Costa, Claudia Sousa Monteiro, IN+, IST

ENERGY DAY

FIRST Project Workshop
November 15th 2018,
IAPMEI Auditorium
LNEG, Lumiar
Context

Interactive Buildings
- Building design
- Envelope solutions
- Energy management
- User interaction

Energy management allow for
- Automation and control
- Energy optimization
- Customer/user needs optimization
- Smart grid optimization
FIRST- Mapping flexibility of urban energy systems

MITEXPL/SUS/0015/20 - With the support of Prof. Leon Glicksman, Professor of Building Technology and Mechanical Engineering at MIT

OBJECTIVES/RESEARCH ACTIVITIES

1. Study of potential for energy flexibility at individual building level (load shifting of typical buildings);
2. Study of potential for energy flexibility at community level (load shifting with algorithms)
3. Mapping out the potential

Partner institutions
Project Team

Carlos A. Santos Silva
Assistant Professor at IST/UL

Claudia Sousa Monteiro
Researcher at IN+i

Daniel Aelenei (Principal Investigator)
Assistant Professor at FCT/UNL

Francisco Costa
Researcher at IN+i/IST-ID

Helder Gonçalves
Director of the Energy Laboratory and Vice-President of LNEG

João Martins
Associate Professor at FCT/UNL

Laura Aelenei
Senior Researcher at LNEG

Rui Amaral Lopes
Assistant Professor at FCT/UNL

Teresa Simões
Researcher at LNEG

Leon Glicksman
Professor of Building Technology and Mechanical Engineering, MIT
For the benefit of the Atlantic societies
A new long-term platform for scientific and economic cooperation across and along the Atlantic, based on existing research capacities and infrastructures.

The AIR Centre is a knowledge and data driven organization, enabling innovative work through bottom-up initiatives that will face new and greater challenges and R&D gaps within the 6 Societal Benefit Areas aligned with the UN Sustainable Development Goals (SDGs)
Background

IEA EBC Annex 67
Energy Flexible Buildings

Operating Agent: Søren Østergaard Jensen,
Danish Technological Institute
Duration: 2015 - 2019
Energy Flexibility Challenge

EF at individual building level with demand flexibility (response) strategies - when the electricity consumption of controllable devices is shifted from their normal consumption...

EF at community level achieved with approaches supporting energy planning spanning time and spatial scales...Energy of prosumers is made available to a cluster of buildings...
Energy Flexibility Challenge

EF at individual building level with demand flexibility (response) strategies - when the electricity consumption of controllable devices is shifted from their normal consumption...

EF at community level achieved with approaches supporting energy planning spanning time and spatial scales...Energy of prosumers is made available to a cluster of buildings...
Energy Flexibility Challenge (examples)

Daily loads profile of a residential building in Lisbon during winter (numerical results) (1)

Heating flexibility with no thermal insulation on a typical Winter in Bragança (numerical results) (2)

(2) Ema Barradas (2017), MSc Thesis, Estudo da flexibilidade através da inércia térmica, FCT-UNL
Urban Building Energy Modelling (UBEM)

Hyunwoo Lim, Zhiqiang Zhai, *Review on stochastic modeling methods for building stock energy prediction*, Building Simulation 2017
Methodology

Characterize the energy services use for each household
- Physical Modelling using EPlus
- Data driven model using clustering on smart meter data
- Monitoring during Winter and Summer time
- Data from Energy Certificates

Optimization with a tool which uses a GPS and a GA4S (in the case of the community approach) to find the operation starting times of the controlled devices that minimize the electricity costs.
Demo

Prof. Daniel Aelenei – FIRST Workshop
Investigating the potential for energy flexibility in an office building with a vertical BIPV and a PV roof system

Daniel Aeleneia, b, *, Rui Amaral Lopesa, b, Laura Aeleneic, Helder Gonçalvesc

a Centre of Technology and Systems/UNINOVA, Amada, Portugal
b Faculty of Science and Technology of Universidade Nova de Lisboa, Portugal
c National Energy and Geology Laboratory, Lisbon, Portugal

Highlights

- Case study is a low energy office building with BIPV and a PV roof system.
- Study focused on the potential to increase load matching between energy generation and consumption and improve grid interaction.
- The integration of Battery Energy Storage Systems can improve the load energy flexibility.
HIGHLIGHTS

- Presents a unique study of 30 NZEBs that have been constructed and have had their performance measured for at least 12 months.
- Study based upon an international collaborative research initiated by the International Energy Agency - the Solar Heating and Cooling Programme (SHC) – Task 40.
- The first book to evaluate building strategies in houses, educational buildings and offices that have been demonstrated to work in practice.

![Graph showing energy balance](image)
Relevant publications

Handbook of Energy Efficiency in Buildings

Presents a complete and thorough coverage of energy efficiency in buildings

HIGHLIGHTS
- ZEB and NZEB (definitions, design methodologies, good practices and case studies)
- Passive houses and bioclimatic architecture
- Sustainability rating systems (LEED, BREEAM, Green Star, ITACA)
- Life Cycle Assessment of buildings
- Simulation tools (steady-state and dynamic codes, critical review, advantages and disadvantages, accuracy and reliability)
- Physical properties of building materials
- Innovative and advanced insulation materials and systems
- Innovative and advanced glazing materials (electrochromic, thermochromatic, selective coatings)
- Adaptive Facades
- Building integrated PV
- Building automation for energy efficiency
- Energy management in buildings

New technologies in energy efficient building renovation
Potential Societal Impacts

- Can help in the transition to a renewable-based power system;
- Valuable to the construction sector and related markets;
- Valuable to ministries and national agencies;
- Can cause high socio-economic impact as it helps in progressing towards a data-driven, cooperative economy and society…

IEA EBC Annex 67
Energy Flexible Buildings
FIRST - Mapping flexibility of urban energy systems

Prof. Daniel Aelenei
Centre of Technology and Systems - UNINOVA
Web: http://in3.dem.ist.utl.pt/first/
Email: aelenei@fct.unl.pt

This project is supported by the National Foundation of Science and Technology through MIT Programme under grant #MIT-EXPL/SUS/0015/2017
Obrigado!