Negotiation and Argumentation in Multi-agent Systems

Fundamentals, Theories, Systems and Applications

Editor:
Fernando Lopes
LNEG–National Research Institute
Lisbon, Portugal

Co-Editor:
Helder Coelho
University of Lisbon
Lisbon, Portugal

© 2014 Bentham Science Publishers Ltd.
Contents

Part I – Fundamentals

1 **Autonomous Agents and Multi-Agent Systems**
 1.1 Introduction
 1.2 Preliminary Issues
 1.2.1 History
 1.2.2 Influences
 1.2.3 Classification Grids
 1.2.4 Brief Analysis
 1.2.5 Synthesis
 1.3 A for Agents
 1.4 E for Environments
 1.5 I for Interactions
 1.6 O for Organizations
 1.7 U for Users
 1.8 Conclusions

References

2 **Game Theoretic Models for Strategic Bargaining**
 2.1 Introduction
 2.2 Strategic Bargaining Models
 2.2.1 Rubinstein’s Protocol
 2.2.2 Protocol Extensions
 2.3 Solving a Bargaining Problem with Complete Information
 2.3.1 Solution Concept and Solving Algorithms
 2.3.2 Equilibrium Strategies
 2.3.3 Experimental Evidences
 2.4 Bargaining with Uncertainty
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1</td>
<td>Solution Concept</td>
<td>41</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Known Results</td>
<td>43</td>
</tr>
<tr>
<td>2.5</td>
<td>Critiques to the Game Theoretical Approach</td>
<td>44</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Critical Issues</td>
<td>44</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Self–confirming Equilibrium Concept</td>
<td>45</td>
</tr>
<tr>
<td>2.6</td>
<td>Conclusions and Future Research Directions</td>
<td>46</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>Computational Negotiation</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Phase Structures in Negotiation</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Preparing and Planning for Negotiation</td>
<td>53</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Negotiation Issues, Limits and Targets</td>
<td>54</td>
</tr>
<tr>
<td>3.3.2</td>
<td>The Negotiation Protocol</td>
<td>56</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Preferences of Negotiators</td>
<td>60</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Initial Strategies</td>
<td>62</td>
</tr>
<tr>
<td>3.3.5</td>
<td>The Other Party’s Information</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>Actual Negotiation (Moving Toward Agreement)</td>
<td>65</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Concession Making</td>
<td>67</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Competitive Behaviour</td>
<td>72</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Problem Solving</td>
<td>74</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Dynamic Strategic Change</td>
<td>77</td>
</tr>
<tr>
<td>3.5</td>
<td>Conclusion</td>
<td>78</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>Advances in Argumentation-based Negotiation</td>
<td>83</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>84</td>
</tr>
<tr>
<td>4.2</td>
<td>Structure of Argumentation-based Negotiation Frameworks</td>
<td>86</td>
</tr>
<tr>
<td>4.3</td>
<td>Argumentation-based Agent Reasoning</td>
<td>89</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Abstract Frameworks</td>
<td>89</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Specific Frameworks</td>
<td>91</td>
</tr>
<tr>
<td>4.4</td>
<td>Argumentation-based Negotiation Protocols</td>
<td>96</td>
</tr>
<tr>
<td>4.5</td>
<td>Argumentation-based Negotiation Strategies</td>
<td>109</td>
</tr>
</tbody>
</table>
Contents

4.5.1 Typology of Negotiation Strategies 109
4.6 Properties of Argumentation-based Negotiation Frameworks .. 117
4.7 Conclusions and Future Research .. 121
References ... 123

Part II – Theories and Systems 127

5 An Overview of Argumentation-Based Negotiation Theory and Decision Support Systems 129
5.1 Introduction ... 130
5.2 The Role of Argumentation in Negotiation 132
5.3 Three Theoretic Perspectives .. 134
5.3.1 Argumentation-Based Automated Negotiation 134
5.3.2 Argumentation Games .. 136
5.4 Cheap-Talk Games .. 137
5.5 Reflections on the Theoretical Literature 138
5.6 A Decision Support Framework .. 140
5.6.1 Core Functions ... 141
5.6.2 Conceptual Components .. 142
5.6.3 Implementation Issues .. 144
5.6.4 Relevant Domains ... 145
5.7 Open Problems and Challenges .. 148
References ... 149

6 Formal Analysis of Negotiation Protocols for Task Allocation 153
6.1 Introduction ... 154
6.1.1 Overview of the OAR Framework .. 155
6.1.2 Related Work ... 158
6.2 OAR Framework .. 159
6.2.1 Objective Functions ... 159
6.2.2 Attitude Parameters ... 160
6.2.3 Reward Splitting .. 162
6.3 General Problem 163
6.4 Statistical Analysis and Verification 165
6.5 Adjusting Local Attitude Parameters 174
6.6 Analysis Mechanism Using the OAR Framework – Numerical Optimization Process 177
6.7 Applications of OAR Framework 179
 6.7.1 Optimality Graphs 179
 6.7.2 Varying the Reward Splitting and its Effect 180
 6.7.3 Different Formulae for Relational Reward Calculation 183
6.8 Conclusion 184
References ... 192

7 Argumentation and Artifacts for Negotiation Support 195
7.1 Introduction 196
7.2 Background 198
 7.2.1 SANA Argumentation Framework 198
 7.2.2 Artifacts in the A&A Meta-Model 201
7.3 SANA General Architecture 203
 7.3.1 Social Argumentation Artifact (SAA) 204
 7.3.2 Social Dialogue Artifact (SDA) 206
 7.3.3 Individual Argumentation Artifact (IAA) .. 207
 7.3.4 Individual Dialogue Artifact (IDA) 208
7.4 SANAP Negotiation Protocol 208
 7.4.1 Motivation and structure 208
 7.4.2 SANA Negotiation Protocol: Syntax 211
 7.4.3 SANA Negotiation Protocol: Denotational Semantics 214
7.5 Case Study of Negotiation 216
7.6 Prototype of SANA Framework 220
 7.6.1 SDA and SANAP Specification 221
 7.6.2 IDA and Dialog Primitives Specification .. 223
 7.6.3 IAA Specification 224
 7.6.4 SAA Specification 224
7.7 Related Work and Conclusions 227
Contents

References .. 232

8 RANA: a Relationship-aware Negotiation Agent 237
 8.1 Introduction ... 237
 8.2 Communication: Rhetoric Particles and Language 239
 8.2.1 Rhetoric Particles 240
 8.3 The LOGIC Framework for Agent Relationships 244
 8.4 Trust and Integrity 247
 8.4.1 Trust Model 248
 8.4.2 Integrity Model: $G^{t}_{\alpha\beta}$ 249
 8.5 ‘relationship-aware’ Negotiation Strategies 251
 8.5.1 Selecting an Interaction Partner 252
 8.5.2 The RANA Agent Architecture 254
References .. 256

9 Normative and Trust-based Systems as Enabler Technologies for Automated Negotiation 259
 9.1 Introduction ... 260
 9.1.1 An Electronic Institution Platform for B2B E-contracting 262
 9.1.2 Research Questions 263
 9.1.3 Structure of the Chapter 264
 9.2 Related Work .. 264
 9.2.1 Normative Environments 264
 9.2.2 Computational Trust 269
 9.2.3 The use of Trust in Normative and Contracting Systems 273
 9.3 A Normative Environment for E-contracting 276
 9.3.1 Informal Overview 276
 9.3.2 Normative Environment 277
 9.3.3 Contracts ... 277
 9.3.4 Institutional Reality 278
 9.3.5 Institutional Rules 279
 9.3.6 Norms .. 281
 9.3.7 Normative Framework 281
9.4 A Computational Trust System for E-contracting

9.4.1 The Trust Aggregation Engine

9.4.2 Contractual Evidences Manager

9.5 Leveraging Automatic Negotiation

9.5.1 The Negotiation Process

9.5.2 Trust-based Preselection of Partners

9.5.3 The Use of Trustworthiness Estimations in Automatic Contract Drafting

9.6 Conclusion

References

Part III – Applications

10 Multiattribute Bilateral Negotiation in a Logic-based E-marketplace

10.1 Introduction

10.2 Preference Elicitation

10.3 Preference Representation: the Language $\mathcal{P}(\mathcal{N})$

10.4 A Logic-based Framework for Multi-issue Negotiation

10.5 Utilities for Numerical Features

10.6 Computing Optimal Outcomes in $\mathcal{P}(\mathcal{N})$

10.6.1 Objective Functions

10.6.2 The Optimization Problem

10.7 The Negotiation Process

10.8 Related Work

10.9 Conclusion

References

11 Multi-Agent Negotiation for Coalition Formation and Management in Electricity Markets

11.1 Introduction

11.2 Electricity Markets
Contents

11.2.1 Market Types 344
11.2.2 Simulation and Multi-Agent Simulation of Electricity Markets 345
11.2.3 Electricity Markets Simulators 347
11.3 MASCEM 349
11.3.1 Multi-Agent Model 350
11.3.2 Strategic Behavior 351
11.3.3 Virtual Power Players 352
11.4 Negotiation in Agents’ Coalitions 355
11.4.1 Coalition Formation 355
11.4.2 Coalition Management 360
11.5 Experimental Findings 361
11.6 Conclusions and Future Work 365
References .. 366

12 Argumentation-based Planning in Multi-Agent Systems 369

12.1 Introduction 369
12.2 Planning for Autonomous Agents 371
12.2.1 Single-agent Classical Planning 372
12.2.2 Multi-agent Planning 373
12.2.3 Coordination in Multi-agent Planning 375
12.3 The Multi-Agent Planning Framework 377
12.3.1 Specification of an MAP Task 378
12.3.2 Refinement Planning 380
12.4 Argumentation Framework 383
12.4.1 Argument Schemes 384
12.4.2 First Stage: Attacks and Dialectical Trees for Evaluating Valid Refinements 385
12.4.3 Second Step: Selection of a Refinement Plan 389
12.5 Example of Application 392
12.5.1 Implementation Issues 392
12.5.2 Planning Scenario 394
12.5.3 Argumentation Examples During the MAP Task Resolution Process .. 396
12.6 Conclusions .. 401
References .. 403

13 Argumentation-based Conflict Resolution in Pervasive Services 407

13.1 Introduction ... 408
13.2 Related Work .. 410
13.3 Argumentation Theory Background 411
13.4 Problem Formalization 412
13.5 Architecture .. 415
 13.5.1 Service-Oriented Architecture for Devices 415
 13.5.2 Gorgias ... 415
 13.5.3 Service Computing Architecture 416
13.6 Implementation .. 417
 13.6.1 DPWS Bundles 417
 13.6.2 Knowledge Base 418
 13.6.3 The Reasoner 418
13.7 Experimentation and Results 423
13.8 Caveats .. 424
13.9 Conclusion and Future Work 425
References .. 426

Index 429
Negotiation is a common, everyday activity that most people use to resolve opposing interests. Businesses negotiate to purchase raw materials and to sell final products. Labor and management negotiate the terms of contracts. Lawyers negotiate to settle legal claims before they go to court. The police negotiate with terrorists to free hostages. Nations negotiate trade agreements and peace accords. Friends negotiate to decide which television programs to watch. The list is endless. Hence, negotiation is not a process reserved only for the skilled diplomat, top salesperson, or ardent advocate for organized labor—it is something that everyone does, almost daily. Although the stakes are not usually as dramatic as peace accords or large corporate mergers, everyone negotiates to resolve problems or disputes.

The negotiation process is fundamentally the same at the personal level as it is at the diplomatic and corporate levels. It is a complex dynamic process. Negotiation requires skills, both behavioural and analytical, to diagnose problems and select appropriate strategies and tactics. It typically involves persuasiveness, eloquence, clever maneuvering, and occasional histrionics. Also, it is a learnable process—most people can improve with a few lessons, a bit of coaching, and some tips on how to do it better. Nevertheless, the core of negotiation is reciprocal offer and counter-offer, argument and counter-argument in an attempt to agree upon outcomes mutually perceived as beneficial.

Multi-agent systems (MAS) represent a relatively new and rapidly expanding area of research and development. MAS are systems composed of software agents that interact to solve problems that are beyond the individual capabilities of each agent. Software agents are elements situated in some environment and capable of flexible autonomous action in order to meet their design objectives. Agent technology is being used to solve real-world problems in a wide variety of commercial and industrial applications, including electronic commerce, electricity networks, business process management, process control, telecommunications, and air traffic control.
Clearly, agents are increasingly acting as elements in complex, distributed communities and need to interact with other agents and with people to fulfill their tasks. This phenomenon has been emphasized by the huge growth and success of the Internet. Conflicts between such agents are inevitable—they are not necessarily bad or good, but they are inevitable. Conflicts occur whenever there are scarce resources, when agents have different interests at stake, or when they try to limit each other’s power to control some situations. Conflict resolution is crucial for avoiding harmful interactions, reconciling disparate viewpoints, and ensuring that agents act coherently in making decisions or taking action. Negotiation is the predominant process for productively managing conflict.

This book is about the common ground between two fields of inquiry: negotiation theory and multi-agent systems. Human negotiation is studied in the various branches of the social sciences, notably economics, international relations, management science, and social psychology. Automated negotiation is an active area of research in artificial intelligence (AI) and computer science generally. This book lets these different strands come together—it includes methods and techniques from the social sciences and AI, merging human with automated negotiation, and thus natural with artificial intelligence.

The area of negotiation in multi-agent systems has grown significantly in the past few years resulting in a substantial body of work and well-established technical literature. There are several journals that focus on research in this area (e.g., Group Decision and Negotiation, and Autonomous Agents and Multi-Agent Systems). In addition, various forums have been dedicated to the study of negotiation in MAS, such as the Group Decision and Negotiation conference series, and the Agent-Based Complex Automated Negotiation (ACAN) workshop series held in conjunction with AAMAS. And development has occurred on the practitioner side as well. At present, automated negotiation systems with software agents representing individuals or organizations and capable of reaching mutually beneficial agreements are beginning to become an important subject of academic teaching, and industrial and commercial applications. Yet, although valuable collections of articles exist, particularly special issue journals and proceedings of conferences and workshops, there is no comprehensive presentation of the major achievements in the area. Also, efforts to draw from the broader study of techniques for influence and argumentation, to integrate this work into a broader understanding of negotiation, or to apply this work to a broad spectrum of conflict and negotiation settings were only beginning to occur. The purpose of this volume is to fulfill these needs.
This book reflects the state of the art in the area of negotiation in MAS, and presents the most recent and very best work on negotiation and the related topics of conflict management and argumentation. It offers the reader a comprehensive and up-to-date overview of the principal theories, methods, and findings relating to the area. The primary audience is composed of researchers, instructors, and graduate students—the book successfully integrates theory, scientific research, and practical applications, and is sufficiently informative to earn the respect of specialists. At the same time, readers who have not specialized in the study of negotiation in MAS should find this an excellent introduction to the area. It is written in a highly accessible style and the text is liberally supported with examples and illustrations.

The book gives an insightful view of a landscape of stimulating ideas and offers a number of key features, notably:

- **Scope.** It is organized into three parts: Fundamentals, Theories and Systems, and Applications. It introduces the reader to the essentials of negotiation in MAS (Part I), treats various specialised topics in detail (Part II), and presents some practical applications (Part III).

- **Theory.** It gives a clear and careful presentation of the key concepts and algorithms that form the core of the area. Many examples and illustrative case studies are provided.

- **Practice.** The emphasis is not only in theory, but also on practice. The ideas presented in the book are supplemented with real-world applications, such as liberalized electricity markets and pervasive services.

- **Expertise:** Its chapters have been written by leading and outstanding authorities that have helped shape the area of negotiation in MAS. This guarantees that the book is built on a very broad and diverse basis of knowledge and experience.

An explanatory and cautionary note about the last-mentioned feature is in order. It is clear that a book prepared by just a few authors is likely to be more coherent than a book in which many authors are involved. But as the reader will see, the editors have invested considerable effort in ensuring the coherence of the book—the chapters’ topics and order was done carefully to produce a highly organised text containing a progressive development of ideas, concepts, and techniques. Also, contributors had the chance to review each others’ work at various stages of writing in order to ensure unified notation (when possible), helping to significantly improve the quality of the book.
This book could not have been completed without the assistance of numerous people. We especially thank:

- All authors of the book, who have shared ideas and deep insights into the fertile area of negotiation in MAS.
- The different organisations that have supported the authors.
- Many of our colleagues working on effective negotiation, who have given us helpful feedback to improve the content of the book.
- The staff of Bentham Science Publishers, for their excellent editorial assistance.
- Our families, who have provided us with the time and support required to finish this project—it is to them that this book is dedicated.

In conclusion, this book is very much a team effort of different people, whose credentials as researchers in the area of negotiation in MAS are impressive, and whose research efforts have made the growth of this area possible.*

*The editors performed this work under the project MAN-REM (FCOMP-01-0124-FEDER-020397), supported by FEDER through the program COMPETE: “Programa Operacional Temático Factores de Competividade”, and National funds through FCT: “Fundação para a Ciência e a Tecnologia”.

Fernando Lopes
Helder Coelho
Contributing Authors

Yazid Benazzouz
CEA, Leti
17 rue des Martyrs
38054 Grenoble cedex 9, France
yazid.benazzouz@cea.fr

David Boyle
Imperial College London
706, Electrical Engineering Building
London SW7 2AZ, UK
david.boyle@imperial.ac.uk

Henrique Lopes Cardoso
University of Porto
Rua Dr. Roberto Frias
4200-465 Porto, Portugal
hlc@fe.up.pt

Helder Coelho
University of Lisbon
Bloco C6, Piso 3, Campo Grande
1749-016 Lisbon, Portugal
hcoelho@di.fc.ul.pt

Tinglong Dai
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213, USA
dai@cmu.edu

John Debenham
University of Technology Sydney
Broadway
NSW 2007, Australia
john.debenham@uts.edu.au

Tommaso Di Noia
Polytechnic of Bari
Via Orabona 4
70125 Bari, Italy
t.dinoia@poliba.it

Eugenio Di Sciascio
Polytechnic of Bari
Via Orabona 4
70125 Bari, Italy
disciacio@poliba.it

Yannis Dimopoulos
University of Cyprus
75 Kallipoleos Str., PO Box 20537
CY-1678, Nicosia, Cyprus
yannis@cs.ucy.ac.cy

Francesco Donini
Università della Tuscia
Via S.Carlo 32
01100 Viterbo, Italy
donini@unitus.it
Nicola Gatti
Polytechnic of Milan
Piazza Leonardo da Vinci 32
20133 Milan, Italy
ngatti@elet.polimi.it

Pavlos Moraitis
Paris Descartes University
45 rue des Saints-Peres
75270 Paris Cedex 06, France
pavlos@mi.parisdescartes.fr

Victor Lesser
University of Massachusetts
Amherst
MA 01003, USA
lesser@cs.umass.edu

Enrico Oliva
University of Bologna
Via Venezia 52
47023 Cesena, Italy
enrico.oliva@unibo.it

Fernando Lopes
LNEG—National Research Institute
Estrada do Paço do Lumiar 22
1649-038 Lisbon, Portugal
fernando.lopes@lneg.pt

Eugénio Oliveira
University of Porto
Rua Dr. Roberto Frias
4200-465 Porto, Portugal
eco@fe.up.pt

Peter McBurney
King’s College London
Strand
London WC2R 2LS UK
peter.mcburney@kcl.ac.uk

Andrea Omicini
University of Bologna
Via Venezia 52
47023 Cesena, Italy
adrea.omicini@unibo.it

Roberto Mirizzi
Polytechnic of Bari
Via Orabona 4
70125 Bari, Italy
mirizzi@deemail.poliba.it

Eva Onaindia
Universitat Politècnica de València
Camino de Vera s/n
46011 València, Spain
onaindia@dsic.upv.es

Hugo Morais
Polytechnic of Porto
Rua Dr. Antonio B. Almeida 431
4200-072 Porto, Portugal
hgvm@isep.ipp.pt

Tiago Pinto
Polytechnic of Porto
Rua Dr. Antonio B. Almeida 431
4200-072 Porto, Portugal
tmp@isep.ipp.pt
Contributing Authors

Isabel Praça
Polytechnic of Porto
Rua Dr. Antonio B. Almeida 431
4200-072 Porto, Portugal
icp@isep.ipp.pt

Jaime Simão Sichman
University of São Paulo
Av. Prf. Luciano Gualberto, 158 trv 3
05508-970 São Paulo, SP, Brazil
jaime.sichman@poli.usp.br

Azzurra Ragone
Polytechnic of Bari
Via Orabona 4
70125 Bari, Italy
a.ragone@poliba.it

Katia Sycara
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213, USA
katia@cs.cmu.edu

Ana Paula Rocha
University of Porto
Rua Dr. Roberto Frias
4200-465 Porto, Portugal
arocha@fe.up.pt

Alejandro Torreño
Universitat Politècnica de València
Camino de Vera s/n
46011 València, Spain
atorreno@dsic.upv.es

Oscar Sapena
Universitat Politècnica de València
Camino de Vera s/n
46011 València, Spain
osapena@dsic.upv.es

Joana Urbano
University of Porto
Rua Dr. Roberto Frias
4200-465 Porto, Portugal
joana.urbano@fe.up.pt

Jiaying Shen
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025-3493, USA
shen@ai.sri.com

Zita Vale
Polytechnic of Porto
Rua Dr. Antonio B. Almeida 431
4200-072 Porto, Portugal
zav@isep.ipp.pt

Carles Sierra
IIIa, CSIC
Campus UAB, 08193 Bellaterra
Catalonia, Spain
sierra@iiiia.csic.es

Mirko Viroli
University of Bologna
Via Venezia 52
47023 Cesena, Italy
mirko.viroli@unibo.it
Ingo Weber
University of New South Wales
UNSW Sydney
NSW 2052, Australia
ingo.weber@cse.unsw.edu.au

Xiaoqin Shelley Zhang
Univ. Massachusetts Dartmouth
285 Old Westport Rd.
North Dartmouth
MA 02747-2300, USA
x2zhang@umassd.edu
Part I

Fundamentals
Chapter 1
Autonomous Agents and Multi-Agent Systems

Jaime Simão Sichman\(^1,*\) and Helder Coelho\(^2\)

\(^1\) Universidade de São Paulo, Escola Politécnica, Lab. de Técnicas Inteligentes
Av. Prof. Luciano Gualberto, 158 trav. 3, 05508-970 São Paulo, SP, Brazil
Email: jaime.sichman@poli.usp.br

\(^2\) Universidade de Lisboa, Departamento de Ciência da Computação
Bloco C6, Piso 3, Campo Grande, 1749-016 Lisboa, Portugal
Email: hcoelho@di.fc.ul.pt

Abstract. The autonomous agents and multi-agent systems domain was very active and fruitful along the last decade, mainly due to the community research efforts, with the organization of more than 50 workshops and a yearly major international conference (AAMAS). Moreover, the domain has reached the 3rd. place in IJCAI 2009 and the 2nd. place in ECAI 2010 in the number of accepted full papers, thus revealing its high relevance within the mainstream current research in the major field of Artificial Intelligence. In this paper, we try to cover its five key elements (agents, environments, interactions, organizations and users), after presenting a brief sketch of its historical milestones. We conclude by pointing out the future aims of research and the right place of negotiation and argumentation within the context of the domain.

Keywords: Agency, Autonomy, Classification Grid, Coalition, Consilience, Decision Theory, Distribution, Game Theory, Governance, Heuristics, Pattern of Cooperation, Social Exchange.

1.1 Introduction

Computing is everywhere. There is now a global and different kind of computing: a massive, globally distributed network of ubiquitous, intelligent knowledge processors, embedded with interlinked smart devices. Unlike the

*Corresponding author: Jaime Simão Sichman

Telephone: +55 11 30915397 Fax: +55 11 30915294
Chapter 2
Game Theoretic Models for Strategic Bargaining

Nicola Gatti*

Politecnico di Milano
Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Email: ngatti@elet.polimi.it

Abstract. Bargaining is one of the most common negotiation situations in which agents must reach an agreement regarding how to distribute objects or a monetary amount. On the one side, each agent prefers to reach an agreement, rather than abstaining from doing so. On the other side, each agent prefers that agreement which most favors her interests. This problem has been widely studied in the game theory literature, under the assumption that agents are *intelligent* (i.e., able to collect all the information over the opponents) and *rational* (i.e., able to maximize their gain). The most satisfactory models represent a bargaining situation as a *non–cooperative (strategic) game*, where a solution is a strategy profile, specifying a strategy per agent, that is somehow in equilibrium. This chapter surveys the game theoretic strategic models for bargaining and the corresponding solving algorithms. Although the bargaining problem has been studied in the literature for almost 30 years, no algorithm able to solve a general bargaining problem with uncertainty is known. The critical issues behind the game theoretic approaches and some possible new research directions are also discussed.

Keywords: Game theory, Bilateral bargaining, Nash equilibrium, Rational agents, Non–cooperative negotiation, Uncertainty, Bayesian models, Alternating–offers protocol, Bargaining in markets, Self–confirming equilibrium.

*Corresponding author: Nicola Gatti
Telephone: +39 02 2399 3658 Fax: +39 02 2399 3411
Chapter 3
Computational Negotiation

Fernando Lopes⋆
LNEG – National Research Institute
Edifício C, Estrada do Paço do Lumiar 22
1649-038 Lisbon, Portugal
Email: fernando.lopes@lneg.pt

Abstract. Negotiation is a process of opportunistic interaction by which two or more parties seek a solution for a divergence of interests through jointly decided action. Traditional negotiation, conducted face-to-face and via telephone or mail, is a critically important activity in all realms of human interaction and often proceeds through several distinct phases or stages—notably a beginning or initiation phase, a middle or problem-solving phase, and an ending or resolution phase. Automated negotiation, conducted autonomously by software agents representing individuals or organizations, is an active area of research in artificial intelligence and computer science generally. Increasingly, automated negotiation systems help in achieving efficient agreements—examples, to mention a few, include the business trend toward agent-based supply chain management, the pivotal role that electronic commerce is increasingly assuming in many organizations, and the industrial trend toward virtual enterprises. This chapter discusses and analyses some of the key negotiation techniques for software agents, placing emphasis on both the early stages of negotiation and the process of moving toward agreement.

Keywords: Intelligent software agents, Multi-agent systems, Automated negotiation, Pre-negotiation, Bargaining, Protocols, Strategies, Preferences, Negotiation Frameworks, Negotiation Systems.
Chapter 4
Advances in Argumentation-based Negotiation

Yannis Dimopoulos1 and Pavlos Moraitis2,*

1 Department of Computer Science
University of Cyprus
Email: yannis@cs.ucy.ac.cy

2 LIPADE, Paris Descartes University
45 rue des Saints-Pères, 75270 Paris Cedex 06, France
Email: pavlos@mi.parisdescartes.fr

Abstract. Argumentation-based negotiation (ABN) is a prevailing approach for automated negotiation. It is based on the exchange of arguments that allow an agent to acquire additional information about the other agents and the particular circumstances of the negotiation, and can be used for attacking or justifying offers. This is an important element in resolving conflicts that very often are due to the assumptions agents have made when making decisions and which may be found to be false in the course of the negotiation. Argumentation-based negotiation can be characterized in terms of three main topics, namely a) the reasoning mechanisms the agents use for negotiating and which are based on argumentation, b) the protocols the agents use for conveying arguments and offers and, c) the strategies that determine their choices at each step of the negotiation. This chapter presents argumentation-based negotiation by discussing representative works dealing with these three topics.

*Corresponding author: Pavlos Moraitis
Telephone: +33 183 945 785 Fax: +33 144 553 535
Part II

Theories and Systems
Chapter 5
An Overview of Argumentation-Based Negotiation Theory and Decision Support Systems

Katia Sycara\(^1\)\(^,*\) and Tinglong Dai\(^2\)

\(^1\)Robotics Institute, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213, USA
Email: katia@cs.cmu.edu

\(^2\)The Carey Business School, Johns Hopkins University
100 International Dr., Baltimore, MD 21202, USA
Email: dai@cmu.edu

Abstract. In this chapter, we provide a multi-disciplinary perspective of the theory and decision support systems of argumentation-based negotiation. Based on an extensive discussion of limitations of proposal-based argumentation, we emphasize the central role of persuasive arguments in a negotiation. Then we draw insights from three theoretical perspectives of argumentation-based negotiation research: argumentation-based automated negotiation, argumentation games, and cheap-talk games. Our reflection on the extant literature leads to a conceptual framework for decision support systems, which consists of key functionality and system components. We also discuss open issues and challenges in the development of the theory and systems of argumentation-based negotiation.

Keywords: Argumentation-based negotiation, Decision support systems, Role of argumentation in negotiation, Rationality framework, Cheap-talk games, Persuasive arguments, Emotion in negotiation, Opponent belief, Negotiation system design, Implementation of negotiation theory.

\(*\)Corresponding author: Katia Sycara

Telephone: (412) 268-8825 Fax: (412) 268-6955

Fernando Lopes (Ed.) and Helder Coelho (Co-Ed.)
All rights reserved — © 2014 Bentham Science Publishers Ltd.
Chapter 6
Formal Analysis of Negotiation Protocols for Task Allocation

Victor Lesser1, Jiaying Shen2, Ingo Weber3,4 and Xiaoqin Shelley Zhang5,*

1 Computer Science Department
University of Massachusetts at Amherst, MA 01003, USA
Email: lesser@cs.umass.edu

2 Artificial Intelligence Center
SRI International, Menlo Park, CA 94025-3493, USA
Email: shen@ai.sri.com

3 Software Systems Research Group
NICTA, Sydney, NSW 2015, Australia
Email: ingo.weber@nicta.com.au

4 School of Computer Science and Engineering
University of New South Wales, Sydney, NSW 2052, Australia

5 Computer and Information Science Department
University of Massachusetts at Dartmouth
285 Old Westport Rd., North Dartmouth, MA 02747-2300, USA
Email: x2zhang@umassd.edu

\textbf{Abstract.} To formally understand the complex behaviors of negotiating agents so as to design appropriate mechanisms to approximate optimal performance, we have constructed a unified framework to model and analyze the task allocation problem in agent societies with different objectives. This OAR framework includes three aspects: agent’s objective (O), its negotiation attitude (A) and the reward splitting (R) among agents who cooperate to accomplish tasks. An agent’s objective can span the spectrum from totally self-interested to completely cooperative, and there can be a mixture of agents with varying objectives in one agent society. This work focuses on understanding how these different aspects interact in order to achieve individual agent’s objective and to produce effective system

\hspace{1cm} (*Corresponding author: Xiaoqin Shelley Zhang

\textit{Telephone: 508-999-8294} \hspace{1cm} \textit{Fax: 508-999-9144}

Fernando Lopes (Ed.) and Helder Coelho (Co-Ed.)
All rights reserved – © 2014 Bentham Science Publishers Ltd.
Chapter 7
Argumentation and Artifacts for Negotiation Support

Enrico Oliva1,*, Peter McBurney2, Andrea Omicini1 and Mirko Viroli1

1 Alma Mater Studiorum–Università di Bologna
Via Venezia 52, 47023 Cesena, Italy
Email: \{enrico.oliva, andrea.omicini, mirko.viroli@unibo.it\}

2 Department of Informatics, King’s College London
Strand, London WC2R 2LS UK
Email: peter.mcburney@kcl.ac.uk

Abstract. Negotiation is a central process in an agent society where autonomous agents have to cooperate in order to resolve conflicting interests and yet compete to divide limited resources. A direct dialogical exchange of information between agents usually leads to competitive forms of negotiation where the most powerful agents win. Alternatively, an intelligent mediated interaction may better achieve the goal of reaching a common agreement and supporting cooperative negotiation. In both cases argumentation is the reference framework to rationally manage conflicting knowledge or objectives, a framework which provides the fundamental abstraction “argument” to exchange pieces of information. In this paper we present a novel conceptual framework for negotiation dialogues using argumentation between autonomous software agents which enables their dialogues to be automated. The framework, called SANA (Supporting Artifacts for Negotiation with Argumentation), incorporates intelligent components able to assist the agent participants to reach agreement by inferring mutually-acceptable proposals. The framework also permits agents to engage in negotiation dialogues with each other, generating and exchanging proposed deals and arguments for and against these proposals. Acceptability of

*Corresponding author: Enrico Oliva
Telephone: +39 0547 3 39220 Fax: +39 0547 3 39208
Chapter 8
RANA: a Relationship-aware Negotiation Agent

Carles Sierra1,* and John Debenham2

1 IIIA, CSIC, Campus UAB, 08193 Bellaterra, Catalonia, Spain
Email: sierra@iiia.csic.es

2 QCIS, UTS, Broadway, NSW 2007, Australia
Email: john.debenham@uts.edu.au

Abstract. Much has been written on the use of rhetorical argumentation to alter the beliefs of a partner agent within a particular negotiation. The problem addressed in this chapter is the measurement of the long-term value of rhetorical argumentation in repeated interactions between a pair of agents, and of the management of such argumentation to achieve strategic aims concerning the strength of the agents’ relationships. RANA is a relationship-aware negotiation agent in the context of information-based agents \cite{1} that have embedded tools from information theory enabling them to measure and manage strategic information.

Keywords: Argumentation, Negotiation, Bargaining, Social relationships, Information theory, Rhetorics, Trust, Software Agent, Agent architecture, Multi-agent System.

8.1 Introduction

Human agents generally place great value on their relationships with others particularly in the conduct of business \cite{2, 3}. Business relationships develop as a subtle byproduct of interaction. Our premiss is that if artificial agents are to conduct business automatically then they too will need to understand the value of business relationships, and will need tools to build and manage

*Corresponding author: Carles Sierra
Telephone: +34-93-580 95 70 Fax: +34-93-580 96 61
Chapter 9
Normative and Trust-based Systems as Enabler Technologies for Automated Negotiation

Joana Urbano*, Henrique Lopes Cardoso, Eugénio Oliveira and Ana Paula Rocha

LIACC, Departamento de Engenharia Informática
Faculdade de Engenharia, Universidade do Porto
Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Email: {joana.urbano,hlc,eco,arocha}@fe.up.pt

Abstract. In this chapter we elaborate on the specification and exploitation of a software agent-based Electronic Institution, embedding both a Normative Environment and a Computational Trust service which, when used in tandem, lead to an enhanced process of selection of potential business partners and enable automatic contract negotiation. We introduce a formalization of a Normative Environment, which accommodates the establishment of e-contracts and provides a contract monitoring facility. Contracts are established and enacted by contractual partners previously selected through an automatic negotiation process. While monitoring contracts at run-time, the Normative Environment makes use of a reporting mechanism to inform relevant contract enactment events to interested parties. In our work, we benefit from this reporting function by exploiting it as an input to a computational trust mechanism. We also present the built-in Computational Trust service, a key element of the Electronic Institution. This service includes two main components: the Contractual Evidences Manager, which generates contractual evidences from contract enactment events; and the Trust Aggregation Engine, a situation-aware trust aggregator that takes into account properties of the dynamics of trust and the contractual context under assessment. We then discuss and propose

*Corresponding author: Joana Urbano
Telephone: +351 22 508 14 00 Fax: +351 22 508 14 40
Part III

Applications
Chapter 10
Multiattribute Bilateral Negotiation in a Logic-based E-marketplace

Azzurra Ragone¹, Tommaso Di Noia¹,*, Eugenio Di Sciascio¹, Francesco M. Donini² and Roberto Mirizzi¹

¹ SisInf Lab – Information System Lab
Politecnico di Bari
via Orabona 4, 70125 Bari, Italy
Email: {a.ragone, t.dinoia, disciacio}@poliba.it, mirizzi@deemail.poliba.it

² Università della Tuscia
via S.Carlo 32, 01100 Viterbo, Italy
Email: donini@unitus.it

Abstract. In this chapter we present an application and a framework aiming at the automation of bilateral negotiation on multiple issue in e-markets. We address several challenges of a typical negotiation in an online marketplace, such as (i) how to elicit preferences from users; (ii) how to formally represent preferences that at the same time allow human users to express both qualitative and quantitative preferences; (iii) how to compute agreements which are mutual beneficial for both buyer and seller, i.e., outcome enjoying economics properties as Pareto-efficiency. The issue of preference elicitation is addressed with the help of an easy-to-use graphical interface hiding all the technicalities of the underlying framework. Preferences are then mapped to a logic language, that allows one to express preferences on both numerical and non-numerical features. We build a utility function on top of this logic language in order to permit the representation of relative importance among preferences, to evaluate the possible agreements and finally choose the one(s) enjoying the Pareto-efficiency property.

*Corresponding author: Tommaso Di Noia
Telephone: +39 0805963903 Fax: +39 0805963410
Chapter 11
Multi-Agent Negotiation for Coalition Formation and Management in Electricity Markets

Tiago Pinto, Hugo Morais, Zita Vale*, Isabel Praça

GECAD – Knowledge Engineering and Decision-Support Research Group
Polytechnic of Porto
Rua Dr. Antonio Bernardino de Almeida, 431, 4200-072 Porto, Portugal
Email: {tmp, hgvm, zav, icp}@isep.ipp.pt

Abstract. Negotiation is a fundamental tool for reaching understandings that allow each involved party to gain an advantage for themselves by the end of the process. In recent years, with the increasing of competitiveness in most sectors, negotiation procedures become present in practically all of them. One particular environment in which the competitiveness has been increasing exponentially is the electricity markets sector. This work is directed to the study of electricity markets’ participating entities interaction, namely in what concerns the formation, management and operation of aggregating entities—Virtual Power Players (VPPs). VPPs are responsible for managing coalitions of market players with small market negotiating influence, which take strategic advantage in entering such aggregations, to increase their negotiating power. This chapter presents a negotiation method to create and manage players’ coalitions. This approach is tested using MASCEM, using this simulator’s capability of providing an adequate framework to model and simulate VPPs. VPPs represent agents’ coalitions, capable of negotiating in the electricity market, and internally, with their members, combining and managing their individual characteristics and specific goals, with the objectives and strategy of the VPP itself.

*Corresponding author: Zita Vale
Telephone: +351 228 340 511 Fax: +351 228 321 159
Abstract. Research in Multi-Agent Planning (MAP) has traditionally been concerned with the design of coordination mechanisms such that the resulting joint plan meets the global goals of a problem. In contrast to most MAP techniques, in this paper we present a novel argumentation-based approach for multiple agents that plan cooperatively while having different capabilities, knowledge about the world and even contradictory information. Our aim is to enhance the role of argumentation as a means to attain a collective behaviour when devising a joint plan. Since agents’ decisions are influenced by the other agents’ plans, the use of mechanisms becomes relevant for persuading an agent to adopt a certain course of action, or negotiating on the use of scarce resources. Through a dialectical process, agents will discuss the different choices put forward by the others thus reaching a commonly agreed solution plan.

Keywords: Multi-agent Systems, Argumentation, Planning, Multi-agent Planning, Coordination, Argument schemes, Dialectical trees, Intelligent Agents, Computational Argumentation, Argumentation-based Negotiation.

12.1 Introduction

Planning is the art of building control algorithms that synthesize a course of action to achieve a desired set of goals. The mainstream in practical planning
Chapter 13
Argumentation-based Conflict Resolution in Pervasive Services

Yazid Benazzouz¹,* and David Boyle²

¹ CEA, Leti
17 rue des Martyrs, 38054 Grenoble cedex 9, France
Email: yazid.benazzouz@cea.fr

² Department of Electrical and Electronic Engineering
Imperial College London
706, Electrical Engineering Building, London SW7 2AZ, UK
Email: david.boyle@imperial.ac.uk

Abstract. Pervasive services applications often employ networked sensors, devices and appliances to build intelligent and adaptable environments, such as Smart Homes. One of the most significant emergent problems in the deployment of such applications is conflicting sensors information. The system is required to decipher the true context of ambiguous or conflicting data in order to efficiently assimilate context-awareness and subsequently ensure accurate adaptability to suit the application space. To-date, there has been speculation as to the optimal method to disambiguate conflicting data; citing the use of “argumentation” based reasoning to resolve conflict situations as a theoretical solution. This chapter presents the first known implementation of argumentation based conflict resolution for pervasive services computing. It proves that the concept is feasible, accurate and efficient, through simulated deployment on a range of conflict scenarios. The prototype is based on SOA4D built upon the OSGi platform and implements DPWS; and is capable of resolving conflicting data gathered from up to 10 sensors in approximately 2.5 seconds. In effect, this work realises the potential of argumentation theory to solve real-world problems in services computing.

*Corresponding author: Yazid Benazzouz

Telephone: +33 4 56 52 03 90 Fax: + 33 4 56 52 03 66
Index

Acceptability of offers, 66
Actual negotiation, 65–78
Additive model, see also Preferences of negotiators
 defining, 60
 main assumptions
 additive independence, 61
 preferential independence, 61
Additive utility function, 60
Agenda
 constructing, 54, 57
 formal, 56
 order of issues, 57
 scope, 57
 simple definition, 57
 tentative or preliminary, 54
Agents
 artifacts for, 197
 as mediators, 227, 318
 as parties, 51
 collaborative, 377
 cooperative, 155
 normative, 264
 self-interested, 159
Agreement
 acceptable, 67
 definition, 66
 improvement, 79
 least-acceptable, 67
 Pareto-optimal, 318, 333
 possible, 66
 rule of implementation, 58
Alternating offers protocol, 33, 34, 59
Alternatives
 BATNA, see also
 identification and selection, 55
 of other party, 64
AND-OR tree, 389
Argument scheme, 384
Argumentation
 classical, 238
 rhetorical, 238
Argumentation games, 131, 136
Argumentation strategy, 251
Argumentation system
defeat relation, 198
 logical language, 198
 set of arguments, 198
Argumentation-based models, of
 bargaining, 50, 131
Argumentation-based negotiation, 134
Argumentation-based planning, 369, see also Planning
Arguments
 attack to, 385
 counter attack to, 388
 rebuttal, 200
 undercut, 200
Artifacts, 201
Bargaining
 argumentation-based models, 50
 cooperative and non-cooperative, 32
 game-theoretic models, 50
 heuristic models, 50
 in markets, 36
 with deadlines, 35
Bargaining cost, 61
BATNA (best alternative to a negotiated agreement), 55
Bilateral negotiation, 51
Bridging, 74
Cheap talk, 131
Cheap-talk games, 137
Commitment, 266
Commitment, positional, 72
Communication language, 244
Communication of information, 65
Communicative acts, see Rhetoric particles
Compatible issues, 75
Compensation, nonspecific, 74
Competing strategies, 62, 72–74
Competitive behaviour, 72–74
Computational trust, see Trust
Concession strategies, 62, 67–71
Concession tactics, 70–71
Concessions
and “reformed sinner” behaviour, 69
and issue priorities, 69
and matching and mismatching, 69
definition, 67
exchange of, 75
factor of, 71
fractionation of, 68
magnitude of, 71
overt, 68
rate of, 68
reciprocal, 67
role of, 68
Contending strategies, 62
Contracts
drafting of, 292
in normative environments, 277
monitoring of, 276
social, 267
Cooperativeness/self-interestedness
degree of, 157
Coordination Artifact, 202
Cost cutting, 74
Cost of delay, 61
Counter-proposal, see Proposal
Culture and negotiation, 142
Deadline, 72, 280
Decision
to accept or reject a proposal, 66
Decision support framework
conceptual components, 142
core functions, 141
implementation issues
performance evaluation, 145
planning, 144
process improvement, 145
relevant domains
health promotion, 147
legal settlement, 145
Dilemma of honesty, 65
Dilemma of trust, 65
Discount factor, 61
Distributive issues, 75
Dual concern model, 62
Dynamic strategic change, 77–78
Electronic institution, 267
e-organization vs., 268
Electronic institution platform
automatic negotiation, 292
experimental study
preselection of partners, 295
normative environment
contracts, 277
definition, 277
institutional rules, 279
normative framework, 281
normative state, 279
norms, 281
trust service
contractual evidences manager, 289
trust aggregation engine, 284
Equilibrium
self confirming , 45
subgame perfect, 38
Evaluation, of offers, 60–61, 66
Expanding the “pie”, 74
Face-saving, 68
Fractionation of concessions, 68
Game theory, 131
Game-theoretic model, of bargaining, 50
Games
argumentation, 136
cheap-talk, 137
signaling, 137
Health Promotion, 147
Heuristic models, of bargaining, 50
Hierarchical task planning, see Planning
Hurting stalemate, 77
Image loss, 68
Independent implementation, 58
Index

Individual problem solving, 74
Initial strategies, selection of, 62–63
Initiation phase of negotiation, 51, 52
Integrating, 62
Integrative solution, 74
Integrity, 248
Interaction protocol, 58
Issue settlement procedures
 issue-by-issue, 57
 joint-offer, 57
Issues
 and agenda, 54
 and trade-offs, 75
 bundling, 58
 complementary, 61
definition, 55
distributive and logrolling, 75
domain of, 60
identification of, 54
major and minor, 54
prioritizing, 54
weight of, 60

JADE, 392
Joint problem solving, 74
Joint-offer procedure, 57
Legal settlement, 145
Level of aspiration, see Target point
Limit
 BATNA and, 55
 changing or not, 56
definition, 56
developing, steps for, 55
Locution, 211
LOGIC framework
 formal model, 244
 information categories, 244
Logic-based e-marketplace
 negotiation framework, 327
 preference elicitation, 319
 graphical user interface, 321
 preference representation, 324
 language $\mathcal{P}(\mathcal{N})$, 325
Logrolling
 agenda subsets and, 75
 by concession making, 75
 by trial and error, 75
defining, 74
grouping issues
 principle of equivalence, 75
time of appropriate exchange, 75
issue priorities and, 75
Logrolling issues, 75
Logrolling strategies, 75–77

Magnitude of concessions, 71
Matching and mismatching, 69
Mediator, 318, 335
Multi-agent planning, 370, see also
 Planning
Multi-issue negotiation, 35, 318
Multilateral negotiation, 37
Multilinear model, see Preferences of
 negotiators
Multiplicative model, see Preferences of
 negotiators
Nash equilibrium, 37
Nash’s demand game, 32
Negotiation, 50
Negotiation models
 argumentation-based, 50
 game-theoretic, 50
 heuristic, 50
Negotiation phases
 initiation, 51, 52
 problem-solving, 51, 52
 resolution, 51, 52
Negotiation protocol, 56–59
Negotiation strategies, 62–63, 67–78
 competing or contending, 72
 concession making, 67
dynamic strategic change, 77
initial strategies, 62
problem solving, 74
Negotiation strategies and tactics
 line between, 66
Negotiation tactics, 70–71
Norms, 264, 274
OAR Framework
 applications, 179
 attitude parameters, 160
 objective functions, 159
 reward splitting, 162
Objective function, 156, 159, 184
Obligations, 265
 fulfillment, 277
 violation, 277
Offer, see Proposal
Ontology, 326
Optimistic point
 definition, 56
Optimization problem, 332
Other party’s information, 63–64
 alternatives, 64
 limits, 64
 past behaviour, 64
 preferences, 64
 priorities, 64, 75
 strategy and tactics, 64
 targets and openings, 64
Partial global planning, see Planning
Partial-order planning, see Planning
Partner selection, see E-institution
Party
 monolithic, 51
PDDL, see Planning
Persuasive arguments, 72, 130
Phases of negotiation, 52
Planning
 classical (single-agent)
 heuristic, 373
 hierarchical, 372
 modeling language, 372
 partial order, 372
 multi-agent
 argumentation in, 375
 conformant, 374
 coordination in, 375
 distributed, 374
 framework for, 377
POP, see Planning
Position loss, 68
Pre-negotiation, 53–64
Preference elicitation, see Logic-based e-marketplace
Preferences of negotiators, 60–61
 additive model, 60
 logic language $P(N)$, 324
 multiplicative model, 61
 preferences over time, 61
Priorities
 definition, 55
 in logrolling, 75
Problem solving
 individual, 74
 joint, 74
Problem solving strategies, 62, 74–77
Problem-solving phase, 51, 52
Promises, 73
Proposal
 acceptability of, 66
 definition, 58
Proposal-based negotiation, 132
Protocol, see Negotiation protocol
Quid pro quo concessions, 65
RANA agent
 architecture, 254
 relationship model
 balance model, 244
 reflection model, 244
 strategies and tactics, 255
 trust and integrity, 247
 integrity model, 249
 trust model, 248
RANA tactics, 254
Rationality vs. emotion, 140
Reciprocity, principle of, 68
Reformed sinner strategy, see Concessions
Relational reward, 158, 160, 165, 183
Resistance point, see Limit
Resolution phase of negotiation, 51, 52
Reward splitting, 157, 159, 162, 184
Rhetoric particles
Index

advise, 239, 243
inform, 239
opinion, 239, 241
threats, 238
Rule of implementation
independent implementation, 58
simultaneous implementation, 58
SANA framework
general architecture, 203
protocol, 208
semantics, 214
syntax, 211
prototype, 220
Sanctions, 265
direct material, 275
indirect social, 275
Schemas, 148
Self-directedness/external-directedness
degree of, 157
Signaling games, 137
Simultaneous implementation, 58
Strategy selection
dynamic, 77–78
initial, 62–63
STRIPS, see Planning
Target point
changing or not, 56
definition, 56
setting of, 55
Tasks
local and non-local, 154
Threats, 73, 238
Trade-offs, 74
Trust, 269
aggregation of, 283
dynamics of, 272, 286
vs. integrity, 248
Trust building
asymmetry in, 273
coherece in, 273
erosion in, 273
forgiveness in, 273
maturity in, 273
Trust in transactions
control, 274
party, 274
Utility function, 60, 133, 328